OPTIMAL EXECUTION OF PORTFOLIO TRANSACTIONS
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Portfolio theory delivers insight into optimal asset allocation and optimal portfolio con-
struction in a frictionless market. However, in reality the acquisition (or liquidation) of
a portfolio position does not come for free. Transaction costs refer to any costs incurred
while implementing an investment decision. Some transaction costs are observable di-
rectly: brokerage commissions, fees (e.g. clearing and settlement costs) and taxes. These
cost components constitute the overwhelming part of total transaction costs for a retail
investor.

However, for an institutional investor, transaction costs are more subtle and stem pri-
marily from market impact caused by his trades. Indeed, empirical research shows that
for institutional sized transactions, total implementation cost is around 1% for a typical
trade and can be as high as 2-3% for very large orders in illiquid stocks [4]. Typically,
institutional investors have a portfolio turnover a couple of times a year. Poor execution
therefore can erode portfolio performance substantially.

An obvious way to avoid market impact would be to trade more slowly to allow market
liquidity recover between trades. Instead of placing a huge 10,000-share order in one big
chunk, a trader may break it down in smaller orders and incrementally feed them into the
market over time. However, slower trading increases the trader’s susceptibility to market
volatility and prices may potentially move disadvantageous to the trader. [4] coin this
the traders’ dilemma: “Do trade and push the market. Don’t trade and the market pushes
you.”. Optimal trade schedules seek to balance the market impact cost of rapid execution
against the volatility risk of slow execution.

Market Model. The classic market impact model in algorithmic trading is due to Alm-
gren and Chriss [I]. There the execution benchmark is the pre-trade price. The difference
between the pre-trade and the post-trade book value of the portfolio (including cash po-
sitions) is the implementation shortfall. In the following, we shall restrict the notation to
sell programs. Thus, the implementation shortfall of a sell program is the initial value of
the position minus the actual amount captured.

In the simplest model the expected value of the implementation shortfall is entirely due
to market impact as a deterministic function of the trading rate, integrated over the entire
trade. The variance of the implementation shortfall is entirely due to the volatility of the
price process S;. More precisely, in a discrete time setup S; is modeled as a random walk

(1) Sy =51+ &
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fort =1,...,T, where & are iid random variables. We use an arithmetic model since our
interest is in short-term trading (typically less than one day), where the difference between
arithmetic and geometric Brownian motion is negligible and the arithmetic process is much
more convenient (we neglect the disadvantageous effect that there is a small, yet positive
probability of the stock price becoming negative).

On top of this exogenous price process, the activity of our trade program causes tem-
porary market impact: our actual trade prices are slightly less favorable than S;. The
effective price per share when we sell v shares at time ¢ is

(2) Sy = Sy — h(v)

for some impact function h(v) > 0. The trader has an order of X shares, which must be
completed by time ¢t = T. A trading strategy is given by x1,...,z7_1, where z; is the
number of shares left to sell at time & (i.e. the trader sells z; 1 — x; at gt_l, with g = X
and 7 = 0). In general x; may be any non-anticipating random functional of the stock
price process S;.

Static and Adaptive Efficient Strategies. In the mean-variance framework used by
[1], “efficient” strategies minimize the variance of the implementation shortfall for a spec-
ified maximum level of expected cost or conversely. The set of such strategies is sum-
marized in the “efficient frontier of optimal trading”, akin to the well-known Markowitz
efficient frontier in portfolio theory. If x; is fixed independently of the process S;, then
straightforward optimization yields the family of mean-variance efficient static trajectories
as r; = sinh(/ﬁ(T — t)) /Sinh(K,T ), parametrized by the urgency parameter x > 0. These
execution strategies were determined by Almgren and Chriss [I], and are path-independent
(also called static): they do not modify the execution speed in response to price movement
during trading.

However, Almgren and Lorenz [3], 5] show that substantial improvement with respect
to the mean-variance tradeoff measured at the initial time is possible if one allows path-
dependent policies that adapt in response to changes in the price of the asset being traded.
[3] construct simple dynamic trading strategies which update exactly once: at some inter-
mediary time they may readjust in response to the stock price movement. Before and after
that “intervention” time they may not respond to whether the price goes up or down. Al-
ready these simple adaptive strategies improve over the path-independent strategies of [I]
with respect to the mean-variance tradeoff measured at the initial time. [5] uses a dynamic
programming principle for mean-variance optimization in discrete time to determine opti-
mal Markovian strategies. This technique reduces the determination of optimal dynamic
strategies to a series of single-period convex constrained optimization problems.

The relative improvement of a dynamic strategy over a static trade-schedule is larger for
large portfolio transactions, expressed in terms of a new preference-free nondimensional
parameter u that measures portfolio size in terms of its ability to move the market relative
to market volatility. For small portfolios, i — 0, optimal adaptive trade schedules coincide
with the optimal static trade schedules of Almgren and Chriss [I].
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FiGURE 1. Adaptive efficient frontiers for different values of the market
power pu and T' = 50. The grey shaded region is the set of values accessible
to static trading trajectories and the black line is the static efficient frontier,
which is also the limit ¢ — 0. The blue dashed curves are the improved
frontiers, with the improvement increasing with p. The inset shows the cost
distributions corresponding to the three points marked on the frontiers.

The optimal adaptive trade schedules are “aggressive-in-the-money”: if the price moves
in our favor in the early part of the trading, then we reduce risk by accelerating the
remainder of the program, spending parts of the windfall gains on higher market impact
costs. If the price moves against us, then we reduce future costs by trading more slowly,
despite the increased exposure to risk of future fluctuations.

Further Work. The model described in this note allows many extensions. Trading of
multiple securities in one joint execution program may be considered (“program trading”),
where the different asset price processes and price impact functions are correlated. Other
possible extensions are different types of price impact, or different asset price processes
e.g. price momentum. Almgren and Lorenz [2] discuss one way to model price momentum
resulting from the daily trading cycle: investment decisions are often made overnight or in
the early morning and then left to be executed during the day, causing intraday momentum,
and we can use price observations during the day to estimate the momentum and to
determine optimal dynamic trading strategies.
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FIGURE 2. Sample trading trajectories of the adaptive strategy (sell pro-
gram) for the point on the frontier in Figure , having the same variance but
lower expected cost than the static trajectory (solid black line). The blue
trajectory belongs to a rising stock price path and accelerates trading. The
red trajectory corresponds to a falling stock price and trades more slowly.
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