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Abstract

Electronic trading of equities and other securities makes heavy use
of “arrival price” algorithms, that determine optimal trade sched-
ules by balancing the market impact cost of rapid execution against
the volatility risk of slow execution. In the standard formulation,
mean-variance optimal strategies are static: they do not modify
the execution speed in response to price motions observed dur-
ing trading. We show that with a more realistic formulation of the
mean-variance tradeoff, and even with no momentum or mean re-
version in the price process, substantial improvements are possible
for adaptive strategies that spend trading gains to reduce risk, by
accelerating execution when the price moves in the trader’s favor.
The improvement is larger for large initial positions.
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1 Introduction

Algorithmic trading represents a large and growing fraction of total order
flow, especially in equity markets. When the size of a requested buy or
sell order is larger than the market can immediately supply or absorb,
then the order must be worked across some period of time, exposing the
trader to price volatility. The algorithm attempts to achieve an average
execution price whose probability distribution is suited to the client’s
preferences. This paper proposes a way to dramatically improve this
distribution.

Arrival price algorithms, which are currently the most widely used
framework, take as their benchmark the pre-trade or “decision” price.
The difference between the execution price and the benchmark is the
“implementation shortfall” (Perold 1988), which is an uncertain quantity
since order execution takes a finite amount of time. In the most straight-
forward version of this model, the expected value of the implementation
shortfall is entirely due to market impact incurred by trading at anonzero
rate (we neglect anticipated price drift); this expected cost is minimized
by trading as slowly as possible, for example, a VWAP strategy across the
maximum allowed time horizon. Since market impact is assumed deter-
ministic, the variance of the implementation shortfall is entirely due to
price volatility; this variance is minimized by trading rapidly.

This risk-reward tradeoff is very familiar in finance, and a variety of
criteria can be used to determine risk-averse optimal solutions. Arrival
price algorithms compute the set of “efficient” strategies that minimize
risk for a specified maximum level of expected cost or conversely; the
set of such strategies is summarized in the “efficient frontier of optimal
trading” introduced by|Almgren and Chriss (2000) (see also|Almgren and
Chriss (1999)). The simple mean-variance approach has the advantage
that the risk-reward tradeoff is independent of initial wealth, a useful
property in an institutional setting.

A central question is whether the trade schedule should be static or
dynamic: should the list of shares to be executed in each interval of time
be computed and fixed before trading begins, or should the trade list be
updated in “real time” using information revealed during execution?

The surprising observation of /Almgren and Chriss (2000)|is that, un-
der very realistic assumptions about the asset price process (arithmetic
random walk with no serial correlation), static strategies are equivalent
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to dynamic strategies. No value is added by considering “scaling” strate-
gies in which the execution speed changes in response to price motions.

To be more specific, let us consider two different specifications of the
trade scheduling problem:

1. For a static strategy, we require that the entire trade schedule must
be fixed in advance (Huberman and Stanzl (2005) suggest that a
reasonable example of this is insider trading, where trades must be
announced in advance). For any candidate schedule, the mean and
variance are evaluated at the initial time, and the optimal schedule
is determined for a specific risk aversion level.

2. For a dynamic strategy as usually understood in dynamic program-
ming, we allow arbitrary modification of the strategy at any time.
To recalculate the trade list, we use all information available at that
time and we value strategies by a mean-variance tradeoff of the re-
maining cost, using a constant parameter of risk aversion.

In the model of |Almgren and Chriss (2000), 1 and 2 have the same so-
lution. Liquidity and volatility are assumed known in advance, so the
only information revealed is the asset price motion. Price information
revealed in the first part of the execution does not change the probability
distribution of future price changes. Because the mean-variance tradeoff
is independent of initial wealth, the trading gains or losses incurred in
the first part of the program are “sunk costs” and do not influence the
strategy for the remainder.
This paper presents an alternative formulation:

3. In the new formulation, we precompute the rule determining the
trade rate as a function of price, using a mean-variance tradeoff
measured at the initial time. Once trading begins, the rule may not
be modified, even if the trader’s preferences reevaluated at an inter-
mediate time would lead him or her to choose a different strategy,
as in 2 above (we call this the “Dr. Strangelove” strategy).

The optimal solution of problem 3 is generally not the same as the solu-
tion of problems 1 and 2.

As an illuminating contrast, in the well-known problem of option
hedging, the optimal hedge position and hence the trade list depend on
price and hence are not known until the price is observed, although the
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rule giving this hedge position is computed in advance using dynamic
programming. Thus formulation 1 is dramatically suboptimal, but 3
gives the same result as 2.

For algorithmic trading, the improved results of 3 over 1 and 2 come
from introducing a negative correlation between the trading gains or
losses in the first part of the execution and market impact costs incurred
in the second part. Trading gains and losses due to price movement are
serially uncorrelated, but they can be correlated with market impact costs
by a simple rule: if the price moves in your favor in the early part of the
trading, then spend those gains on market impact costs by accelerating
the remainder of the program. If the price moves against you, then re-
duce future costs by trading more slowly, despite the increased exposure
to risk of future fluctuations. The result is an overall decrease in vari-
ance measured at the initial time, which can be traded for a decrease in
expected cost.

In practice there are no artificial constraints on the adaptivity of trad-
ing strategies. The key observation of this paper is that the ex ante mean-
variance optimization expressed by formulation 3 corresponds better to
the way that trading results are measured in practice, via ex post sam-
ple mean and variance over a collection of similar programs. A simple
example will make the logic clear.

1.1 Example

Suppose that two bets are available. Bet A pays 0 or 6 with equal prob-
ability; its expected value is 3 and its variance is 9. Bet B pays 1 with
certainty; its expected value is 1 and its variance is zero. We consider a
risk-averse investor whose coefficient of risk aversion is 1/9: he assigns
ex ante value E — (1/9)V to a random payout with expected value E and
variance V. For this investor, a single play of A has value 2 and a single
play of B has value 1, so he prefers A.

Now suppose that our investor will play this game two times, with
independence between the outcomes. We consider three ways in which
he may choose his bets.

1. In a static strategy, he must fix the sequence AA, AB, BA, or BB
before the game begins. By independence, choice AA has twice the
value of A and is preferred. Its value is 4.
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2. In a dynamic strategy, he chooses the second bet after he learns
the result of the first play. By that time, the first result will be a
constant wealth offset, so he will always choose A on the second
play. Knowing that that will be his future choice, he chooses A on
the first bet to maximise his total value measured at the initial time.
Thus the strategy and the payoff are the same as in the static case.

3. In our new formulation, the investor specifies three choices: his bet
on the first play, his bet on the second play if he wins the first one,
and his bet on the second play if he loses the first. The optimal
rule is to bet A on the first play, and if then he wins to choose B,
if he loses to play A again, giving payouts 0, 6, 7, and 7 with equal
probability. Its value is 4.06, better than choices 1 or 2.

In this model, bet A corresponds to slow trading, with high expected
value (low cost) and high variance, and B is fast trading. If the ran-
dom outcome (trading gain) in the first period is positive, then the trader
spends some of this gain on reducing the variance in the second period.

Now suppose that the investor plays this game many times in se-
quence, and wishes to optimize his sample mean and variance, combined
using the same coefficient of risk aversion. If the results are reported over
individual plays, then the ex post sample mean and variance will be close
to the ex ante expectation and variance of a single play, and the optimal
strategy will be to bet A each time, as in 1 and 2 above.

However, suppose the results are aggregated over pairs of plays. That
is, the gains of play 1 and play 2 are added together, play 3 and play 4
are added, etc. Then the adaptive strategy of case 3 above will give the
best results: within each pair, choose the second bet based on the result
of the first one. If the results are grouped into larger sets, then a more
complicated strategy will be even more optimal.

1.2 Trading in practice

As in the simple example, the question of which formulation is more re-
alistic depends on how trading results are reported. At Banc of America
Securities, and probably at other firms, clients of the agency trading desk
are provided with a post-trade report daily, weekly, or monthly depend-
ing on their trading activity. This report shows sample average and stan-
dard deviation of execution price relative to the implementation shortfall
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benchmark, across all trades executed for that client during the report-
ing period. The results are further broken down into subsets across a
dozen dimensions such as strategy type, primary exchange, buy or sell,
trade size, market capitalization, sector, and the like.

Because of the subsets, it is difficult to identify a larger unit than the
individual order. We therefore argue that the broker-dealer’s goal is to
design algorithms that optimize sample mean and variance at the per-
order level, so that the post-trade report will be as favorable as possible.
As in the simple example, this criterion translates to formulation 3 above,
which is not optimized by current arrival price algorithms.

Of course, the broker also has a responsibility to design the post-trade
report so that it will be maximally useful to the client; that is, so that it
corresponds as closely as possible to the client’s investment goals. One
interpretation of the results here is that the report should show statistics
with finer resolution. For example, it could show mean and variance
of shortfall for each one thousand dollars of client money spent, for
example. The best choice of reporting interval is an open question.

1.3 Other adaptive strategies

Our new optimal stratgies are “aggressive-in-the-money” (AIM) in the
sense of Kissell and Malamut (2006): execution accelerates when the
price moves in the trader’s favor, and slows when the price moves ad-
versely. A “passive-in-the-money” (PIM) strategy would react oppositely.
Adaptive strategies of this form are called “scaling” strategies, and they
can arise for a number of reasons beyond those considered here.

A decrease in risk tolerance following a gain, and increase follow-
ing a loss, is consistent with traders’ observed preferences (Shefrin and
Statman 1985) and is well-known in “prospect theory” (Kahneman and
Tversky 1979). Perhaps for this reason, scaling strategies often seem in-
tuitively reasonable, though such qualitative preferences properly have
no place in quantitative institutional trading. Our formulation is straight-
forward mean-variance optimization.

One important reason for using a AIM or PIM strategy would the ex-
pectation of serial correlation in the price process. If the price is believed
to have momentum (positive serial correlation), then a PIM strategy is op-
timal: if the price moves favorably, one should slow down to capture even
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more favorable prices in the future. Conversely, if the price is believed
to be mean-reverting, then favorable prices should be captured quickly
before they revert. Adaptive strategies can also be optimal according to
risk aversion criteria other than simple mean-variance (Kissell and Mala-
mut 2006). Our strategies arise in a pure random walk model with no
serial correlation, using pure classic mean and variance.

These models do provide an important caveat for our formulation.
Our AIM strategy suggests to “cut your gains and let your losses run.” If
the price process does have any significant momentum, even on a small
fraction of the real orders, then this strategy can cause much more se-
rious losses than the gains it provides. Thus we do not advocate imple-
menting them in practice before doing extensive empirical tests.

In Section 2] we present our market and trading model, and show the
general importance of the “market power” parameter. We then consider
two simple “proofs of concept:” in Section [3] a single update time, and
in Section [4]a continuous response function depending linearly on asset
price. In Section [5| we summarize and describe ongoing work towards
the full continuous-time model.

2 Market Model

We consider trading in a single asset whose price is S(t), obeying the
arithmetic random walk

S(t) = So + o B(t)

where B(t) is a standard Browian motion and ¢ is an absolute volatil-
ity. This process has neither momentum nor mean reversion: future
price changes are completely independent of past changes. The Brown-
ian motion B(t) is the only source of randomness in the problem. In the
presence of intraday seasonality, we interpret t as a volume time relative
to a historical profile, and we assume that volatility is constant under
this transformation.

The trader has an order of X shares, which begins at time t = 0 and
must be completed by time t = T < co. We shall suppose X > 0 and
interpret this as a buy order. The benchmark value of this position at
the start of trading is XSj.
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A trading trajectory is a function x(t) with x(0) = X and x(T) = 0,
representing the number of shares remaining to buy at time t. For a
static trajectory, x (t) is determined at t = 0, but in general x(t) may be
any non-anticipating random functional of B.

The trading rateis v (t) = —dx/dt, which will generally be positive as
x (t) decreases to zero. With a linear market impact function for simplic-
ity, although empirical work (Almgren, Thum, Hauptmann, and Li 2005)
suggests a concave function, the actual execution price is

S(t) = S(t) + nu(t)

where n > 0 is the coefficient of temporary market impact. Permanent
market impact is also important but has no effect on the optimal trade
trajectory if it is linear. (See Almgren and Chriss (2000) for a general
discussion of this model.) We assume that the model parameters are
known with certainty, and thus the underlying price S(t) is observable
based on our execution prices S(t) and our trade rate v (t).

The implementation shortfall C is the total cost of executing the buy
program relative to the initial value:

C

T
J Styvt)dt — XS
0

T T
O'J x(t)dB(t) + nJ v(t)*dt.
0 0

(We have substituted the expressions above and integrated once by parts,

using B(0) = 0 and x(T) = 0.) The first term represents the trading gains

or losses: since we are buying, a positive price motion gives positive cost.

The second term represents the market impact cost. For an adaptive

strategy, both terms are random since x(t) and hence v (t) are random.
Mean-variance optimization solves the problem

min(E + AV) (1)
x(t)
for each A = 0, where E = E(C) and V = Var(C) are the expected value
and variance of C. As A varies, the resulting set of points (V(A),E(A))
trace out the efficient frontier. For adaptive strategies, C is not Gaussian,
but we continue to optimize mean and variance.
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2.1 Static trajectories
If x(t) is fixed independently of B(t), then C is a Gaussian random vari-
able with mean and variance
T T
E = nJ v(t)’dt and V = O'ZJ x(t)%dLt.
0 0
The solution of is then obtained as x(t) = X h(t,T, k), where the

static trajectory function is

_ sinh(k(T - t))
ht, T,k) = Sinh(xT) forO<t=<T, (2)

and the static “urgency” parameter is

K = AT 3)
n

The units of k are inverse time, and 1/« is a desired time scale for liqui-
dation, the “half-life” of Almgren and Chriss (2000). The static trajectory
is effectively an exponential exp(—«t) with adjustments to reach x = 0
att = T. For fixed A, the optimal time scale is independent of portfolio
size X since both expected costs and variance scale as X?.

Equivalence of the static and dynamic solutions is demonstrated by
observing that

hit, T,k) = h(s, T,k)h(t —s,T — s,K) forO<s<t<T.

That is, the trajectory recomputed at time s, using the same urgency
parameter, is the same as the tail of the original trajectory.

By taking k — 0, we recover the linear profile x(t) = X(T-t)/T, which
is equivalent to a VWAP profile under the volume time transformation.
This profile has expected cost Ejin = nX?/T and variance Vyi, = 02X?T/3.

2.2 Nondimensionalization

The solution and the cost will depend on five dimensional constants: the
initial shares X, the time horizon T, the volatility o, the impact coefficient
n, and the risk aversion A. To simplify the structure of the solution, it is
convenient to define scaled variables.
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We measure time relative to T and shares relative to X. That is, we
define the nondimensional time { = t/T and nondimensional function
X(t) = x(Tt)/X,sothat 0 <t < 1 and X(0) = 1, £(1) = 0. The nondi-
mensional velocity is ¥ (f) = v(Tt)/(X/T) = —dx/dLt.

We scale the cost by the dollar cost of a typical move due to volatility.
That is, we define C = C/(0X+/T), and then we have

1 1
C = | &DaBd + u| od?ai 4)
0 0
where B(t) = B(Tt)/+/T and the “market power” parameter is
_ nX/T
- oJT

Here the numerator is the price concession for trading at a constant rate,
and the denominator is the typical size of price motion due to volatility
over the same period. The ratio u is a nondimensional preference-free
measure of portfolio size, in terms of its ability to move the market.

To estimate realistic sizes for this parameter, we recall that Almgren,
Thum, Hauptmann, and Li (2005) introduced the nonlinear model K/o =
n(X/VT)% where K is temporary impact (the only kind relevant here),
o is daily volatility, X is trade size, V is an average daily volume (ADV),
and T is the fraction of a day over which the trade is executed. The
coefficient was estimated empirically as n = 0.142, as was the exponent
o = 3/5. Therefore, a trade of 100% ADV executed across one full day
gives u = 0.142. Although this is only an approximate parallel to the
linear model used here, it does suggest that for realistic trade sizes, u
will be substantially smaller than one.

Problem (1) has the scaled form min(E + uk2V), where £ = E(C),
V = var(C), and the scaled static urgency is & = kT with k from (3), or

_,  A0T?
Q2 =
n
The scaled risk aversion parameter uk? depends on X via the factor p,
though the scaled time scale k is independent of X.

We use k as the parameter to trace the frontier in place of A. The result
will be a trajectory X (t; &, u), with scaled cost values E (&, p) and V (i, u).
For each value of u > 0, there will be an efficient frontier obtained by

tracing E and V as functions of & over 0 < k < . The linear trajectory
has scaled expected cost Eji, = y and variance Vi, = 1/3.
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2.3 Small-portfolio limit

We now consider the limit u — 0, with Kk constant. Since X appears in u
but not in k, and all the other dimensional variables do appear in k, this
is equivalent to taking X — O with T, o, n, and A fixed. We show that for
small portfolios, static strategies are optimal.

When u is small, then (assuming that x(t) and v (t) have reasonable
limits) the second term in (4) is small compared to the first and the vari-
ance of nondimensional cost is approximately

var(C) ~ Varjolfc(f) dB(f) = JOI[E(fc(f)Z)df, u— 0.

That is, the uncertainty in realized price comes primarily from price
volatility. Even if the strategy is adapted to the price process so that
X (t) is random, the market impact cost is itself a small number and the
uncertainty in that number can be neglected next to volatility.

The first term in (4) has strictly zero expected value for any nonan-
ticipating strategy (it is an It integral) and hence the expectation comes
entirely from the second term. Thus E(C) = UE fo ¥ (t)2dt, and the com-
plete risk-averse cost function is approximately

1
E + ur?v ~ “J [E(o(f)2 + szc(f)z)df, u— 0.
0

~

Suppose we had a candidate adaptive strategy X (t). Since the quadratic
is convex, the static strategy x(f) = Ex(f) will give a lower value of the
objective function (thus x (t) and v (t) have limits, justifying the original
assumption). When p is not small, adaptive strategies can create negative
correlation between the two terms in (), reducing the overall variance
below its value for purely static trajectories.

2.4 Portfolio comparison

In its simplest form, our goal is to determine the optimal strategy x (t)
for any specific set of parameters. But to understand the results, it is
useful to compare strategies and costs for portfolios of different sizes.
Consider two portfolios X; and X,, with X, = 2X; and all other pa-
rameters the same including risk aversion; thus p, = 2u; and K is the
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same. Portfolio X, will in general cost four times as much to trade as
portfolio X;. For example, static trajectories for the two portfolios will
have identical shapes, and the costs will satisfy E, = 4E; and V, = 4V/].
For adaptive strategies, the larger portfolio is still more expensive
to trade than the smaller portfolio, but it can take more advantage of
negative correlation. Thus we will have E» + AV, < 4(E; +AV;) for each A
(it is generally not true that separately E» < 4E;, and V> < 4V;). The ratio
of adaptive cost to static cost will be less for a large portfolio than for a
small portfolio, though all costs are higher for the large portfolio. The
solutions presented in this paper will of most interest to large investors.
To highlight the difference in relative costs, when we draw efficient
frontiers as in Figure (1, we show expectation of cost and its variance
relative to their values for the linear trajectory. Then the static efficient
frontiers for all values of u > 0 superimpose, since the costs of all static
trajectories scale precisely as X?. This common static frontier appears as
the limit of the adaptive frontiers as u — 0. As u increases, the adaptive
frontiers move down and to the left, away from the static frontier.

For convenience, we now drop the ". All variables are nondimensional,
the time interval is 0 < t < 1, and we shall use E, V to refer to the scaled
variables E,V above.

3 Single Update

In this section, we update the urgency at a single decision time T, with
0 < Ty < 1 (recall that all variables are now nondimensional). On the
first trading period 0 < t < T,, we use an initial urgency ko; that is,
the trajectory is x(t) h(t,1, kg) with h from . Let Xy (Ko, Ty) =
h(T4, 1, ko) be the remaining shares at this time. At time T, we switch
to one of n new urgencies ki,...,Ky,: with urgency k;, we set x(t) =
Xs(Koy, T) M(t — Ty, 1 — Ty, K;) for Ty <t < 1.

We choose the new urgency based on the (nondimensional) realized
cost up until T:

T« T«

J x(t)dB(t) + “J v(t)>dt

0 0
Tk

= J (B(t) + pv(t))v(t)dt + X, B(Ty).
0

Co
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To measure Cj at time T, we note that in the second expression above,
the first term is the total dollar cost paid to acquire the shares so far,
minus the value of those shares at the pre-trade price. The second term
is our estimation of the additional cost that will need to be paid on the
remaining shares, relative to the pre-trade price, due to price movements
observed so far. As noted in Section[2] B(t) is observable if we know our
execution prices, our trade rate, and the coefficient of market impact.

We partition the real line into n intervals I, ..., I, and use k; if Cop € Ij;
for large n, this approaches a continuous dependence k = f(Cy). The
intuition in the Introduction suggests that using accumulated cost should
be more effective than using the instantaneous price at time T,.

Before trading begins, we fix the decision time T, the interval break-
points, and the n + 1 urgencies Ko, ..., K,+1. But we do not know which
trajectory we shall actually execute until we observe Cj at time T.

We denote by C; the costincurred on the second part of the trajectory,
if urgency k; is used:

Cj

1 1
J x(t)dB(t) + u| vt)*dt

T* T*

1
[ By + wv) v ar - x. BT,

Tx

Then the total cost is
C = Co+ Cyy) (5)

where 7(Cy) = i if Cy € I;. Although this total cost is not Gaussian, we
still compute the optimal frontier by mean-variance optimization.

3.1 Mean and variance

As described in Section [1, we calculate means and variances at the ini-
tial time. Each variable C; is Gaussian with mean E; = uF; and vari-
ance V;, where F; and V; are integrals of the form F; = [v(t)?>dt and
V; = [ x(t)? dt which do not depend on u (see Appendix). We define the
intervals as I; = {b;_; < Cyp < b;} with b; = Ey + aj/Vy and ao,...,a,
fixed constants with ag = —o, a,, = .

To calculate mean and variance of the composite cost C, we define
the fixed nondimensional quantities

pj=®(a;) -®(aj1) and q;=d¢(a;-1) - Pa;),
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for j =1,...,n,where ¢ is the standard normal density and ¢ its cumu-
lative. Thus PI‘Ob{C() S Ij} =pj and [E(C() | Gy € Ij) =FEy + (qj/pj)\/Vo
By linearity of expectation, we readily get

E =pu(F+F) with F=)>piF.

The variance is more complicated because of the dependence of the
two terms in (5). We use the conditional variance formula Var(X) =
E(Var(X|Y)) + Var(E(X|Y)) to write, with V = > p;V;,

Var(C) [E(Var( Co + Cq(co) | Co )) + Var([E( Co + Cf_](co) | Co ))
= E(Vicy) + Var(Co + Ex(cy))

= V + VaI'(C()) + 2 COV(C(),E;/(CO)) + Var(Eg(CO)).
By definition, Var(Cy) = Vi, and Var(E;,)) = u> > pi(Fi — f)z. Also,

Cov(Co, Egcy)) = E(CoEncy) — E(Co) E(Excy))
= ZPrOb{Co € Ii} [E(COE’](CO) | Co € Il')—[E(C()) [E(E’](CO)) = IJ\/VOZ tii.

Putting all this together, we have

V = Var(C) = Vo-l—V + 2[1\/V>quiEi + uzzpi(Ei—E)Z.

The overall objective function is U = (E + uk?V)/u, or

U( Ko, K1y kn, T B, u) = Fo+F + &2(Vo+V)
T+ 2uiP\Vo S aiF; + 12k pi(Fi - F)°.

The O(u) term is approximately 2 > (Cy — Ey) piE;, and can be made neg-
ative by making E; negatively related to Cy, corresponding to anticorrela-
tion between second-period impact costs and first-period trading losses.

For a given market power uy and static urgency K, we minimize U
numerically over the urgencies ko, k1,..., Kk, and the decision time T,.
As K varies, the resulting set of points (V, E) traces the efficient frontier.
There is a one-parameter family of efficient frontiers, depending on u
(Figure [1); the static trajectories appear as the limit p = 0.
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3.2 Numerical results

Figure [1| shows the complete set of efficient frontiers for the single-
update problem. Each curve is computed by varying the static urgency
parameter K from O to o, for a fixed value of u. The solution for each pair
(K, p) is computed using a fixed set of 32 equal-probability breakpoints.
As described in Section we plot E and V relative to their values for
the linear trajectories, to clearly see the improvement due to adaptivity.

We use these frontiers to obtain cost distributions for adaptive strate-
gies that are better than the cost distributions for any static strategy.
In Figure (1| the point labeled “k = 8” describes a particular static tra-
jectory computed with parameter k = 8, giving a normal cost distri-
bution. For a portfolio with y = 0.1, this distribution has expectation
E ~ 4 X Ejin ~ 4 X u = 0.4 and variance V =~ 0.2 X Vjin = 0.2/3 = 0.067.
The inset shows this distribution as a black dashed line.

The pink shaded wedge in Figure |1/ shows the set of values of (V,E)
accessible to an adaptive strategy with u = 0.1, that are strictly prefer-
able to the static strategy since they have lower expected cost and/or
variance. On the efficient frontier for u = 0.1, these solutions are ob-
tained by computing adaptive solutions with parameters approximately
in therange 4.9 < k < 7.1. There is no need to use the same value of k for
the adaptive strategy as for the static strategy to which it is compared.

The inset shows the cost distributions associated with these adaptive
strategies. For k = 4.9, the adaptive distribution has lower expected
cost than the static distribution, with the same variance. For kK = 7.1,
the adaptive distribution has lower variance than the static distribution,
with the same mean. These distributions are the extreme points of a one-
parameter family of distributions, each of which is strictly preferable to
the given static strategy, regardless of the trader’s risk preferences. For
example, the adaptive solution for kK = 6 has both lower expected cost
and lower variance than the static solution.

These cost distributions are strongly skewed toward positive costs,
suggesting that mean-variance optimization may not give the best pos-
sible solutions. Nonetheless, it is clear that these adaptive distributions
are strictly preferable to the reference static strategy, since they have
lower probability of high costs and higher probability of low costs.

Figure |2| shows the adaptive trading strategy for y = 0.1 and K = 6.
The dashed line is the static optimal trajectory with urgency Kk = 8, com-
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Figure 1: Adaptive efficient frontiers for different values of market power
u. The expectation of trading cost E = E(C) and its variance V = Var(C)
are normalized by their values for a linear trajectory (VWAP), as described
in Section The blue shaded region is the set of values accessible to
a static trajectory and the blue curve is the static frontier, which is also
the limit y — 0 with fixed static urgency k. The black curves are the
improved values accessible to adaptive strategies; the improvement is
greater for larger portfolios. The inset shows the actual distributions
corresponding to the indicated points.
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pared to which this adaptive strategy delivers both lower expectation
of cost and lower variance. The adaptive strategy initially trades more
slowly than the optimal static trajectory. At Ty, if prices have moved in
the trader’s favor, then the strategy accelerates, spending the investment
gains on impact costs. If prices have moved against the trader, corre-
sponding to positive values of Cy, then the strategy decelerates to save
impact costs in the remaining period. The values of k become very large
when () is large negative, corresponding to the instruction: “if you have
gains in the first part of trading, then finish the program immediately.”

4 Continuous Response

We now illustrate a simple form of continuous response to trading gains
or losses. In general, we may specify any rule giving the trade rate v (t) as
a function of the price history B(s) for O < s < t. Rather than adjusting
the rate v (t) directly, it is more convenient to adjust the urgency k(t).
From (2), we differentiate x(s) = x(t) h(s —t,1 — t, k) with respect to s
and evaluate at s = t, obtaining the relationship between v and «

v(t) = x(t)k(t) coth(k(t)(1-1)). (6)

For all choices of k(t) the trajectories hit x =0 att = 1.
Determining the full optimal dependence of k(t) on B(s) forO <s <t
is difficult (see Section[5). Here we consider only the relationship

K(t) = aexp(bB(t))

in which the instantaneous urgency depends on the instantaneous price
level. Other functional relationships for k (t) in terms of B(t) are possible
as well. Here, k(t) is always positive, and is monotone in B(t).

From (6), we readily obtain x(t) and finally the shortfall C by inte-
gration as in (4). However, because of the highly non-linear dependence
of k(t), and thus v (t) and x(t), on the Brownian motion B(t), analytic
evaluation of this stochastic integral is beyond reach.

4.1 Numerical results

For numerical solutions, we generate a fixed collection of sample paths
using a Brownian bridge construction with quasi-random variates. For
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Figure 2: Adaptive trading trajectories for market power yu = 0.1, match-
ing the points on the frontiers in Figure|ll The dashed line is the static op-
timal trajectory with urgency Kk = 8; the adaptive strategy has Kk = 6 and
32 equal-probability paths. This adaptive strategy delivers both lower
expectation of cost and lower variance than the static strategy. The inset
shows the dependence of the new urgency on the initial trading cost Cj,
normalized by the ex ante expectation and standard deviation of C.
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any candidate values of a and b, we evaluate the stochastic integrals
numerically and evaluate the sample mean E and variance V. We then
minimize the objective function E + k?u?V numerically over a and b.

By solving for a series of values of 0 < kK < o we can again trace the
efficient frontiers for different values of u, yielding similar results as in
the single update framework in Section

Again, the optimal strategies are “aggressive in the money,” having
b < 0. When the stock price goes down, we incur unexpectedly smaller
shortfall and react with increasing urgency « (t), whereas for rising stock
prices we slow down trading. Figure (3|illustrates this behaviour for two
sample paths of the stock price.

5 Discussion and Conclusions

The simple update rules presented in Sections 3| and [4| demonstrate that
price adaptive scaling strategies can lead to significant improvements
over static trade schedules, and they illustrate the importance of the
new “market power” parameter yu. However, neither of these rules is
the fully optimal adaptive execution strategy. A fully optimal adaptive
strategy would use stochastic dynamic programming to determine the
trading rate as a general function of the continuous state variables such
as number of shares remaining, time remaining, current stock price, and
trading gains or losses experienced to date.

One subtlety is that the mean-variance criterion cannot be used di-
rectly in this context: it involves the square of an expectation, which
is not amenable to dynamic programming techniques. However, Li and
Ng (2000)| have shown how to embed mean-variance optimization into
a family of optimizations using a quadratic utility function. The mean-
variance solution is recovered as one element of this family. The need to
solve this family of problems is an addition degree of complication.

The calculation uses the tools of stochastic optimal control and re-
quires numerical solution of a highly nonlinear Hamilton-Jacobi-Bellman
partial differential equation. Proper formulation of this problem, and
solution of the resulting equations, is ongoing work of the authors. The
examples presented here show that even with very simple adaptive strate-
gies, substantial improvement is possible over static strategies.
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Figure 3: Optimal trading trajectories using the adaptation rule k(t) =
aexp(bB(t)) witha = 5.9and b = —1.7, for static urgency K = 6. As the
stock price goes down (lower, red curve), trading is accelerated compared
to the optimal static trajectory (dashed line), whereas for rising stock
price it is slowed down.
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A Detailed formulas
Here we present the detailed calculations described in Section
A.1 Means and variances
The integrals are readily determined to be
F Ko(sinh(2kg) — sinh(2ko(1 — Tx)) + 2koTx)
0 4 sinhz(Ko)
v sinh(2ko) — sinh(2ko (1 — Tx)) — 2ko T
0 4K sinh? ( Ko)
and
P sinh® (ko(1 — Tx)) ki(sinh(2k;(1 — Tx)) + 2k;(1 — T))
' sinh® (ki (1 — Ty)) 4 sinh? (ko)
v sinhZ(Ko(l - :r* ) sinh(2k;(1 — Ty)) — 2ki(1 — T)
' sinh® (ki (1 — Ty)) 4k; sinh®(kg)
fori=1,...,n.
A.2 Full distribution
Each C; is Gaussian with mean E; and variance V;, so its density is
(Ci — E;)? .
(C - =0,1,...
fl(Cl) 2_’_‘_Vl exp( 2Vl ) l Os ] ’n
The composite variable is C = Cy + C; for Cy € I; where I; = (b;_1, b;)

and b; = Ey + a;+/Vo with a1, ..., a1 fixed constants. Then

f(c)dc =Prob{C € [c,c +dc)}

n
= ZPI’Ob{ Coel; aIldCiE [C—C(),C—C()-l-dC)}

i=1
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SO

Z J S (Co) fi(C — Cp) dCy
i=1 71

n b; _ 2 _ )2
_ 1J ox (_(Co E))? (C-Cy E»)dco

(S

2V 2V

CU[ES | (C-E)?* _ (EoVi+ (C-E)W)’
Vo Vi VoVi(Vo + Vi)

2
bi 1[Vo+V; EoV; + (C — E)Vo
% J eXp<_2 [ VoVi (CO T VotV ) 4Co
n 2
-y exp<_(C—E0—El) )
SN2 (Vo + V) 2(Vo+ Vi)
[ <(C—Ei—bi1)vo+ (Eo—bi1)Vi)
X | P
VVoVilVo + Vy)

((C —E; —bi)Vo + (Eg — bi)vi)]
- &
VVoVi(Vo + V)
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